Oxford Cambridge and RSA

GCE

Mathematics

Unit 4727: Further Pure Mathematics 3
Advanced GCE

Mark Scheme for June 2014

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Question		Answer	Marks	Guidance	
1	(i)	$\begin{aligned} & \left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \times\left(\begin{array}{l} 3 \\ 5 \\ 2 \end{array}\right)=\left(\begin{array}{c} 7 \\ -7 \\ 7 \end{array}\right)=7\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \\ & (\mathrm{eg}) z=0 \Rightarrow 2 x+y=4,3 x+5 y=13 \Rightarrow x=1, y=2 \\ & \mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \end{aligned}$	M1 A1 M1 A1	oe vector form	M1 requires evidence of method for cross product or at least 2 correct values calculated or any valid point e.g. $(0,3,-1),(3,0,2)$ Must have full equation including ' \mathbf{r} =
		Alternative: Find one point Find a second point and vector between points $\begin{aligned} & \text { multiple of }\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \\ & \mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right) \end{aligned}$ Alternative: Solve simultaneously Point and direction found $\mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array}\right)$	M1 M1 A1 A1 M1 M1 A1 A1 [4]	to at least expressions for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ parametrically, or two relationship between 2 variables.	

Question		Answer	Marks	Guidance	
1	(ii)	$\frac{\|2 \times 2+5--2-4\|}{\sqrt{2^{2}+1^{2}+1^{2}}}=\frac{7}{\sqrt{6}}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Condone lack of absolute signs for M1 oe surd form. isw	2.86 with no workings scores M1
		Alternative: find parameter for perpendicular meets plane and use to find distance	$\begin{aligned} & \text { M1 } \\ & {[2]} \\ & \hline \end{aligned}$	For complete method with calculation errors	look for $\lambda=-7 / 6$
2		$\begin{aligned} & u=y^{2} \Rightarrow \frac{d u}{d x}=2 y \frac{d y}{d x} \\ & \text { so } \mathrm{DE} \Rightarrow 2 y \frac{d y}{d x}-4 y^{2}=2 \mathrm{e}^{x} \\ & \Rightarrow \frac{d u}{d x}-4 u=2 \mathrm{e}^{x} \\ & I=\exp \int-4 \mathrm{~d} x=\mathrm{e}^{-4 x} \\ & \mathrm{e}^{-4 x} \frac{d u}{d x}-4 \mathrm{e}^{-4 x} u=2 \mathrm{e}^{-3 x} \\ & u \mathrm{e}^{-4 x}=-\frac{2}{3} \mathrm{e}^{-3 x}(+A) \\ & u=-\frac{2}{3} \mathrm{e}^{x}+A \mathrm{e}^{4 x} \\ & y=\sqrt{-\frac{2}{3} \mathrm{e}^{x}+A \mathrm{e}^{4 x}} \end{aligned}$ Alternative from $4^{\text {th }}$ mark to $6^{\text {th }}$ mark CF: $(\mathrm{u}=\ldots) A e^{4 x}$ PI: $u=k e^{x}, \frac{d u}{d x}=k e^{x}$ $k e^{x}-4 k e^{x}=2 e^{x}, \quad k=-\frac{2}{3}$	M1 M1 A1 A1ft	Correctly finds or for complete unsimplified substitution	$\text { Or } \frac{d y}{d x}=\frac{1}{2} u^{-\frac{1}{2}} \frac{d u}{d x}$ Can be implied by next A1 Must have form $\frac{\mathrm{d} u}{\mathrm{~d} x}+f(x) u=g(x)$ for this mark and any further marks Can be implied by subsequent work
			M1*	Multiples through by IF of form e^{kx}, simplifying RHS	
			M1dep	Integrates	
			M1dep *	Rearranges to make u or y^{2} the subject	No more than 1 numerical error at this step
			A1	Cao	ignore use of ' \pm '
			A1		
			M1*	PI chosen \& differentiated correctly	
			M1 dep* [8]	Substitutes and solves	

Question		Answer	Marks	Guidance	
3	(i)	$\begin{aligned} & z^{6}=1 \Rightarrow z=\mathrm{e}^{2 k \pi \mathrm{i} / 6} \\ & k=0,1,2,3,4,5 \end{aligned}$ Diagram	M1 A1 B1 B1 [4]	Oe exactly 6 roots 6 roots in right quadrant, correct angles and moduli	accept roots $1,-1$ given as integers. as evidenced by labels, circles, or accurate diagram, or by co-ordinates
3	(ii)	$\begin{aligned} & (1+i)^{6}=\left(\sqrt{2} e^{\frac{1}{4} \pi i}\right)^{6} \\ & 8 e^{\frac{6}{4} \pi i} \\ & =-8 i \end{aligned}$ Alternative: $\begin{aligned} & (1+\mathrm{i})^{6}=1+6 i+15 i^{2}+20 i^{3}+15 i^{4}+6 i^{5}+i^{6} \\ & \quad=1+6 i-15-20 i+15+6 i-1 \\ & =-8 \mathrm{i} \end{aligned}$ Alternative: $(1+i)^{2}=2 \mathrm{i}$ $\begin{aligned} & (1+i)^{6}=(2 i)^{3} \\ & =-8 i \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	Attempts modulus-argument form, getting at least 1 correct for (mod) ${ }^{6}$ and $\arg \mathrm{x} 6$ ag no more than 1 term wrong ag ag	complete argument including start line Sc 2 for only lines $2 \& 3$ correct

Question		Answer	Marks	Guidance			
6	(i)	$l \\|\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right) \Pi \perp\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)$ so $\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right) \cdot\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)=0 \Rightarrow l \\| \Pi$ $(1,-2,7)$ on l but $4 \times 1--2-7=-1 \neq 8$ so not in Π hence l not in Π	M1 M1 A1 [3]	dot product of correct vectors $=0$ substitute point on line into Π and calculate d Full argument includes key components	Argument can be about a general point on line		
6	(ii)	$(\mathbf{r}=)\left(\begin{array}{c} 1 \\ -2 \\ 7 \end{array}\right)+\lambda\left(\begin{array}{c} 4 \\ -1 \\ -1 \end{array}\right)$ closest point where meets Π $\begin{aligned} & 4(1+4 \lambda)-(-2-\lambda)-(7-\lambda)=8 \\ & \Rightarrow \lambda=\frac{1}{2} \\ & \Rightarrow \mathbf{r}=\left(\begin{array}{c} 3 \\ -\frac{5}{2} \\ \frac{13}{2} \end{array}\right) \end{aligned}$	B1 M1 A1ft A1 [4]	parametric form of (x, y, z) substituted into plane			
6	(iii)	$\mathbf{r}=\left(\begin{array}{c}3 \\ -\frac{5}{2} \\ \frac{13}{2}\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)$	B1ft [1]	oe	must have "r ="		

Question		Answer	$\begin{gathered} \text { Marks } \\ \hline \text { B1 } \end{gathered}$	Guidance	
7	(i)	$\begin{aligned} & 2 \mathrm{i} \sin \theta=\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta} \\ & 2 \mathrm{i} \sin n \theta=\mathrm{e}^{\mathrm{i} \theta} \theta-\mathrm{e}^{-\mathrm{in} \theta} \\ & (2 \mathrm{i} \sin \theta)^{5}=\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)^{5} \\ & =\mathrm{e}^{\mathrm{i} 5 \theta}-5 \mathrm{e}^{\mathrm{i} 3 \theta}+10 \mathrm{e}^{\mathrm{i} \theta}-10 \mathrm{e}^{-\mathrm{i} \theta}+5 \mathrm{e}^{-\mathrm{i} 3 \theta}-\mathrm{e}^{-\mathrm{i} 5 \theta} \\ & 32 i \sin ^{5} \theta=\left(e^{5 i \theta}-e^{-5 i \theta}\right)-5\left(e^{3 i \theta}-e^{-3 i \theta}\right)+10\left(e^{i \theta}-e^{-i \theta}\right) \\ & =2 \mathrm{i} \sin 5 \theta-5(2 \mathrm{i} \sin 3 \theta)+10(2 \mathrm{i} \sin \theta) \\ & \sin ^{5} \theta=\frac{1}{16}(\sin 5 \theta-5 \sin 3 \theta+10 \sin \theta) \end{aligned}$		any equivalent form binomial expansion grouping terms AG	If use z, must define it can be unsimplified Award B1 then sc M1A1 for candidates who omit this stage from otherwise complete argument must convince on the $\frac{1}{16}$ and on the elimination of i
7	(ii)	$\begin{aligned} & 16 \sin ^{5} \theta-10 \sin \theta=\sin 5 \theta-5 \sin 3 \theta \\ & 16 \sin ^{5} \theta-6 \sin \theta=0 \\ & \sin \theta=0, \pm \sqrt[4]{\frac{3}{8}} \\ & \theta=0, \pm 0.899 \end{aligned}$	M1* A1 M1dep* A1 [4]	Attempts to eliminate $\sin 5 \theta$ and $\sin 3 \theta$ must have 3 values for $\sin \theta$	Or $16 \sin ^{5} \theta=6 \sin \theta$

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \text { is identity } \\ & \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)^{-1}=\frac{1}{a^{2}+b^{2}}\left(\begin{array}{cc} a & b \\ -b & a \end{array}\right) \in G \\ & \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)\left(\begin{array}{cc} c & -d \\ d & c \end{array}\right)=\left(\begin{array}{cc} a c-b d & -b c-a d \\ b c+a d & a c-b d \end{array}\right) \end{aligned}$ and $\begin{aligned} & (a c-b d)^{2}+(b c+a d)^{2}=a^{2} c^{2}+b^{2} d^{2}+b^{2} c^{2}+a^{2} d^{2} \\ & =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \neq 0 \end{aligned}$	B1 M1 A1 M1 M1 A1 [6]	for M1, must at least get matrix in form $\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right)$, or state existence of inverse due to non-singularity Must not attempt to prove commutativity in (i)	
8	(ii)	$\begin{aligned} & \left(\begin{array}{cc} c & -d \\ d & c \end{array}\right)\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)=\left(\begin{array}{cc} a c-b d & -b c-a d \\ b c+a d & a c-b d \end{array}\right) \\ & =\left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)\left(\begin{array}{cc} c & -d \\ d & c \end{array}\right) \text { so commutative } \end{aligned}$	M1 A1 [2]		must also consider matrices reversed, but may be seen in (i)
8	(iii)	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)^{2}=\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)^{2}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \end{aligned}$ order 4	M1 M1 A1 [3]	g^{2} must be correct allow 1 error in getting g^{4}	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England

Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

